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ABSTRACT 

Information Retrieval is an emerging research area in the field of Information Retrieval. Due to the immense 

amount of data in the WWW, it is very tough for the user to retrieve the relevant images. Traditional Image Retrieval 

approaches based on topic similarity alone is not sufficient nowadays the content based image retrieval (CBIR) are 

becoming a source of exact and fast retrieval. A variety of techniques have been developed to improve the performance of 

CBIR. Data clustering is an unsupervised method for extraction hidden pattern from huge data sets. With large data sets, 

there is possibility of high dimensionality. Having both accuracy and efficiency for high dimensional data sets with 

enormous number of samples is a challenging arena. In this paper the clustering techniques are discussed and analysed. 

Also, we propose a method HDK that uses more than one clustering technique to improve the performance of CBIR.This 

method makes use of hierachical and divide and conquer K- Means clustering technique with equivalency and compatible 

relation concepts to improve the performance of the K-Means for using in high dimensional datasets. It also introduced 

the feature like color, texture and shape for accurate and effective retrieval system. This survey gives an introduction to 

content-based image Retrieval and explores the different types of retrieval methods  

KEYWORDS:  CBIR, Image Feature Extraction, Image Analysis, Image Retrieval, Image Similarity Clustering 

Techniques 

INTRODUCTION 

Content-based image retrieval (CBIR), also known as query by image content (QBIC) and content-based visual 

information retrieval (CBVIR) is the application of computer vision techniques to the image retrieval problem, that is, the 

problem of searching for digital images in large databases (see this survey[1] for a recent scientific overview of the CBIR 

field). Content-based image retrieval is opposed to concept-based approaches . 

"Content-based" means that the search analyzes the contents of the image rather than themetadata such as 

keywords, tags, or descriptions associated with the image. The term "content" in this context might refer to colors, shapes, 

textures, or any other information that can be derived from the image itself. CBIR is desirable because most web-based 

image search engines rely purely on metadata and this produces a lot of garbage in the results Also having humans 

manually enter keywords for images in a large database can be inefficient, expensive and may not capture every keyword 

that describes the image. Thus a system that can filter images based on their content would provide better indexing and 

return more accurate results. 

The term "content-based image retrieval" seems to have originated in 1992 when it was used by T. Kato to 

describe experiments into automatic retrieval of images from a database, based on the colors and shapes present.[2] Since 
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then, the term has been used to describe the process of retrieving desired images from a large collection on the basis of 

syntactical image features. The techniques, tools, and algorithms that are used originate from fields such as statistics, 

pattern recognition, signal processing, and computer vision. 

There is a growing interest in CBIR because of the limitations inherent in metadata-based systems, as well as the 

large range of possible uses for efficient image retrieval. Textual information about images can be easily searched using 

existing technology, but this requires humans to manually describe each image in the database. This is impractical for very 

large databases or for images that are generated automatically, e.g. those from surveillance cameras. It is also possible to 

miss images that use different synonyms in their descriptions. Systems based on categorizing images in semantic classes 

like "cat" as a subclass of "animal" avoid this problem but still face the same scaling issues. 

CBIR TECHNIQUES 

Many CBIR systems have been developed, but the problem of retrieving images on the basis of their pixel content 

remains largely unsolved. 

Query Techniques  

Different implementations of CBIR make use of different types of user queries. Query by example is a query 

technique that involves providing the CBIR system with an example image that it will then base its search upon. The 

underlying search algorithms may vary depending on the application, but result images should all share common elements 

with the provided example. 

Options for providing example images to the system include: 

• A preexisting image may be supplied by the user or chosen from a random set. 

• The user draws a rough approximation of the image they are looking for, for example with blobs of color or 

general shapes. 

This query technique removes the difficulties that can arise when trying to describe images with words. 

Semantic Retrieval 

The ideal CBIR system from a user perspective would involve what is referred to as semantic retrieval, where the 

user makes a request like "find pictures of Abraham Lincoln". This type of open-ended task is very difficult for computers 

to perform - pictures of chihuahuas and Great Danes look very different, and Lincoln may not always be facing the camera 

or in the same pose. Current CBIR systems therefore generally make use of lower-level features like texture, color, and 

shape, although some systems take advantage of very common higher-level features like faces . Not every CBIR system is 

generic. Some systems are designed for a specific domain, e.g. shape matching can be used for finding parts inside a CAD-

CAM database. 

Other Query Methods 

Other query methods include browsing for example images, navigating customized/hierarchical categories, 

querying by image region (rather than the entire image), querying by multiple example images, querying by visual sketch, 

querying by direct specification of image features, and multimodal queries (e.g. combining touch, voice, etc.) 

CBIR systems can also make use of relevance feedback, where the user progressively refines the search results by 

marking images in the results as "relevant", "not relevant", or "neutral" to the search query, then repeating the search with 
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the new information. 

Content Comparison Using Image Distance Measures 

The most common method for comparing two images in content-based image retrieval (typically an example 

image and an image from the database) is using an image distance measure. An image distance measure compares the 

similarity of two images in various dimensions such as color, texture, shape, and others. For example a distance of 0 

signifies an exact match with the query, with respect to the dimensions that were considered. As one may intuitively 

gather, a value greater than 0 indicates various degrees of similarities between the images. Search results then can be sorted 

based on their distance to the queried image.[3] A long list of distance measures can be found in. 

Color 

Computing distance measures based on color similarity is achieved by computing a color histogram for each 

image that identifies the proportion of pixels within an image holding specific values (that humans express as colors). 

Current research is attempting to segment color proportion by region and by spatial relationship among several color 

regions. Examining images based on the colors they contain is one of the most widely used techniques because it does not 

depend on image size or orientation. Color searches will usually involve comparing color histograms, though this is not the 

only technique in practice. 

Texture 

Texture measures look for visual patterns in images and how they are spatially defined. Textures are represented 

by texels which are then placed into a number of sets, depending on how many textures are detected in the image. These 

sets not only define the texture, but also where in the image the texture is located. 

Texture is a difficult concept to represent. The identification of specific textures in an image is achieved primarily 

by modeling texture as a two-dimensional gray level variation. The relative brightness of pairs of pixels is computed such 

that degree of contrast, regularity, coarseness and directionality may be estimated (Tamura, Mori & Yamawaki, 1978). 

However, the problem is in identifying patterns of co-pixel variation and associating them with particular classes of 

textures such as silky, or rough. 

Shape 

        Shape does not refer to the shape of an image but to the shape of a particular region that is being sought out. Shapes 

will often be determined first applying segmentation or edge detection to an image. Other methods like [Tushabe and 

Wilkinson 2008] use shape filters to identify given shapes of an image. In some case accurate shape detection will require 

human intervention because methods like segmentation are very difficult to completely automate. 

THE RETRIEVAL BASED ON CLUSTERING TECHNIQUES  

Clustering techniques can be classified into supervised (including semi-supervised) and unsupervised schemes. 

The former consists of hierarchical approaches that demand human interaction to generate splitting criteria for clustering. 

In unsupervised classification, called clustering or exploratory data analysis, no labeled data are available The goal of 

clustering is to separate a finite unlabeled data set into a finite and discrete set of “natural,” hidden data structures, 

rather than provide an accurate characterization of unobserved samples generated from the same probability 

distribution This paper critically reviews and summarizes different clustering techniques. 
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Log –Based Clustering 

Images can be clustered based on the retrieval system logs maintained by an information retrieval process. The 

session keys are created and accessed for retrieval. Through this the session clusters are created. Each session cluster 

generates log –based document and similarity of image couple is retrieved. Log –based vector is created for each 

session vector based on the log-based document. Now, the session cluster is replaced with this vector. The unaccessed 

documents creates its own vector. 

A hybrid matrix is generated with at least one individual document vector and one log-based clustered 

vector. At last the hybrid matrix is clustered. This technique is difficult to perform in the case of multidimensional images. 

To overcome this hierarchical clustering is adopted. 

Hierarchical Clustering 

Hierarchical clustering (HC) algorithms organize data into a hierarchical structure according to the proximity 

matrix. The results of HC are usually depicted by a binary tree or dendrogram as shown in Figure 1where A, B, C, D, 

E, F, G are objects or clusters. It represents the nested grouping of patterns and similarity levels at which groupings 

change. The root node of the dendrogram represents the whole data set and each leaf node is regarded as a data 

object. The intermediate nodes, thus, describe the extent that the objects are proximal to each other; and the height of 

the dendrogram usually expresses the distance between each pair of objects or clusters, or an object and a cluster. The 

ultimate clustering results can be obtained by cutting the dendrogram at different levels. This representation provides very 

informative descriptions and visualization for the potential data clustering structures, especially when real hierarchical 

relations exist in the data, like the data from evolutionary research on different species of organizms. HC algorithms are 

mainly classified as agglomerative methods and divisive methods. Agglomerative clustering starts with clusters and each 

of them includes exactly one object. A series of merge operations are then followed out that finally lead all objects to 

the same group. Divisive clustering proceeds in an opposite way. In the beginning, the entire data set belongs to a cluster 

and a procedure successively divides it until all clusters are singleton clusters. For a cluster with objects, there are   

2N-1-1 possible two-subset divisions, which is very expensive in computation. Therefore, divisive clustering is not 

commonly used in practice. In recent years, with the requirement for handling large-scale data sets in data mining 

and other fields, many new HC techniques have appeared and greatly improved the clustering performance.  

Retrieval Dictionary Based Clustering 

A rough classification retrieval system is formed. This is formed by calculating the distance between two 

learned patterns and these learned patterns are classified into different clusters followed by a retrieval stage. The main 

drawback addressed in this system is the determination of the distance. To overcome this problem a retrieval system is 

developed by retrieval dictionary based clustering. This method has a retrieval dictionary generation unit that classifies 

learned patterns into plural clusters and creates a retrieval dictionary using the clusters. Here, the image is retrieved 

based on the distance between two spheres with different radii. Each radius is a similarity measure between central 

cluster and an input image. An image which is similar to the query image will be retrieved using retrieval dictionary. 

NCut Algorithm 

Ncut method attempts to organize nodes into groups so that the within the group similarity is high, and/or 

between the groups similarity is low. This method is empirically shown to be relatively robust in image                               

segmentation. This method can be recursively applied to get more than two clusters. In this method each time the 
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subgraph with maximum number of nodes is partitioned (random selection for tie breaking). The process terminates 

when the bound on the number of clusters is reached or the Ncut value exceeds some threshold T. The recursive Ncut 

partition is essentially a hierarchical divisive clustering process that produces a tree. Nonetheless, the tree organization 

here may misleading a user because there is no guarantee of any correspondence between the tree and the semantic 

structure of images. Furthermore, organizing image clusters into a tree structure will significantly complicate the user 

interface. 

K Means Clustering 

This nonhierairchal method initially takes the number of components of the population equal to the final 

required number of clusters. In this step itself the final required number of clusters is chosen such that the points are 

mutually farthest apart. Next, it examines each component in the population and assigns it to one of the clusters 

depending on the minimum distance. The centroid's position is recalculated everytime a component is added to the cluster 

and this continues until all the components are grouped into the final required number of clusters.The K- means 

algorithm is very simple and can be easily implemented in solving many practical problems. It can work very well for 

compact and hyperspherical clusters. The time complexity of K-means is O (NKd). Since K and d are usually much less 

than N,K-means can be used to cluster large data sets. Parallel techniques for K-means are developed that can largely 

accelerate the algorithm. Incremental clustering techniques for example (Bradley et al., 1998) do not require the storage of 

the entire data set, and can handle it in a one-pattern-at-a-time way. If the pattern displays enough closeness to a 

cluster according to some predefined criteria, it is assigned to the cluster. Otherwise, a new cluster is created to represent 

the object. 

Graph Theory Based Clustering 

The concepts and properties of graph theory make it very convenient to describe clustering problems by means 

of graphs. Nodes of a weighted graph correspond to data points in the pattern space and edges reflect the proximities 

between each pair of data points. A graph-based clustering method is particularly well suited for dealing with data that is 

used in the construction of minimum spanning tree MST. It can be used for detecting clusters of any size and shape 

without specifying the actual number of clusters. Well known algorithms in clustering are Minimum Spanning Tree based 

clustering, and clustering editing method, HCS algorithm, etc. Current research is focused on clustering using divide 

and conquers approach. Usually this clustering methodology is used to detect irregular clustering boundaries in clustering 

results. Zhan proposes to construct an MST and delete the inconsistent edges, i.e. the edges weight values are significantly 

larger than average weight of the nearby edges in the tree. The inconsistency measure is applied to each edge to detect 

and remove the inconsistence edges, which results as a set of disjoint subtrees, each subtree will represent a separate 

cluster 

Divide and Conquer K-Means 

When the size of a data set is too large, it is possible to divide the data into different subsets and to use the 

selected cluster algorithm separately to these subsets. This approach is known as divide and conquer . The divide and 

conquer algorithm first divides the entire data set into a subset based on some criteria. The selected subset is again 

clustered with a clustering algorithm K-Means. The advantage is to accelerate search and to reduce complexity which 

depends on number of samples. Methods based on subspace clustering may help to ease the problem of clustering 

high-dimensional data, but they are not adapted at obtaining a large number of clusters .A possible solution to this issue, 

is to cluster hierarchically (obtain a small number of clusters and then cluster again each of the clusters obtained). The 
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proposed enhanced clustering method HDK which uses the combination of unsupervised clustering methods is one of 

the method that can largely accelerate the CBIR system. 

CONCLUSIONS 

The purpose of this survey is to provide an overview of the functionality of content based image retrieval 

systems. Combining advantages of HC and divide and conquer K-Means strategy can help us in both efficiency and 

quality. HC algorithm can construct structured clusters. Although HC yields high quality clusters but its complexity is 

quadratic and is not suitable for huge datasets and high dimension data. In contrast K-Means is linear with size of data 

set and dimension and can be used for big datasets that yields low quality. Divide and conquer K-Means can be used for 

high dimensional data set . In this paper we present a method HDK to use both advantages of HC and Divide and conquer 

K-Means by introducing equivalency and compatible relation concepts. Using two steps clustering in high dimensional 

data sets with considering no of clusters based on color feature helps us to improve accuracy and efficiency of original K-

Means clustering. For this purpose we should consider orthogonal space. HDK algorithm has been used extensively 

in various areas to improve the performance of the system and to achieve better results in different applications. 
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